C&UCHÝ'S ROOT (R&DIC&L) TEST

(B.Sc.-II, Paper-III)

Group B

Sudip Kumar

Assistant Professor, Department of Mathematics Sachchidanand Sinha College Aurangabad, Bihar

Cauchy's proof (pradical) test
Statement:
$$\Rightarrow$$
 If Σ Un be a series of
positive term such that
 $\lim_{n \to \infty} (u_n)^n = J$, then the series be
is is convergent if $J < 1$
(i) divergent if $J > 1$
(ii) the test fails and the series may
either converge or diverge if $J \ge 1$.
Broof: \Rightarrow Case(i) Let $J < 1$.
 \therefore $u_n > 0$, $\forall n \Rightarrow J > 0$
We can choose $e > 0$ such that
 $0 < J + e < 1$
 \therefore I im $u_n^{T_n} = J$
 \therefore I a natural number NEIN s.t.
 $J - e < u_n^{T_n} < J + e, $\forall n > N$
But $\sum_{n \ge N}^{\infty} (J + e)^n$ is a Grip series with $cr = J + e$.
Where, $0 < J + e < 1$.$

$$\therefore \sum_{N}^{\infty} (2+e)^{N} \text{ is convergent}$$
And so $\sum_{N}^{\infty} u_{N}$ is also convergent.

$$\therefore B_{Y} \text{ comparision test}$$

$$\sum_{i}^{\infty} u_{N} \text{ is convergent}.$$
(: addition or ommision of finite number
of terms does not affect the convergence
or divergence of the series)
Casecillut 1>1
Then we can choose $e>0$ s.t.
 $1-e>4.$
As in the case is \exists a natural number
NeN s.t.
 $u_{n}^{T} > 1-e, \forall n > N(e)$
 $\therefore u_{n} > (1-e)^{N}$
But $\sum_{i}^{\infty} (1-e)^{N}$ is a G.P. series with
 $core (1-e>1, and so it divergent$
 $\therefore \Sigma u_{n}$ is also divergent by comparision
 $\frac{+est}{n}$

Case(iii) consider two series It and Σh2· The series Σ_n is divergent and While $\lim_{n \to \infty} (\frac{1}{n})^{\frac{1}{n}} = 1$ ($\neq 0$ & finite) And the series $\Sigma_{n^2}^{\perp}$ converges. while $\lim_{n \to \infty} \left(\frac{1}{n^2} \right)^n = 1$ ($\neq 0 \& \text{finite}$) Casedi ict Thus the test fails to give any & definite information for L=1. As in the case is 3 a natural number ·+.2 Mak CONTRA A STORE STORE き(ヨート) 人言とい But 15 (1-e) is a only service with contraction to and so it divergent . Super is also divergent by companisher. 8.14. test

Scanned with CamScanne

$$\underbrace{\operatorname{Cauchy's root + test}}_{n \to \infty} (1 + \frac{1}{n})^{n} = e$$

$$(i) \lim_{n \to \infty} (1 + \frac{1}{n})^{n} = \frac{1}{e}$$

$$(i) \lim_{n \to \infty} (1 + \frac{1}{n})^{n} = \frac{1}{e}$$

$$(i) \lim_{n \to \infty} (1 + \frac{1}{n})^{n} = \frac{1}{e}$$

$$(i) \lim_{n \to \infty} (1 - \frac{1}{n})^{n} = e$$

$$\underbrace{\operatorname{Example}}_{n \to \infty} (1 + \frac{1}{n})^{n}$$

$$\underbrace{\operatorname{Example}}_{n \to \infty} (1 + \frac{1}{n})^{n}$$

$$\underbrace{\operatorname{Example}}_{n \to \infty} (1 + \frac{1}{n})^{n} = \frac{1}{(1 + n)^{n}}$$

$$\underbrace{\operatorname{Example}}_{n \to \infty} (1 + \frac{1}{n})^{n} = \frac{1}{(1 + \frac{1}{n})^{n}} = \frac{1}{e} < 1.$$

$$\therefore \lim_{n \to \infty} (u_{n})^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})^{n}} = \frac{1}{e} < 1.$$

$$\therefore \text{ The series } \Sigma^{u_{n}} \text{ is the given series}$$

$$is \underline{\operatorname{Convergent}}.$$

Example (2): + Test the convergency of the series

$$\sum (1+\frac{1}{m})^{n}$$
Solution: +
Here $u_n = (1+\frac{1}{m})^{n} = (1+\frac{1}{m})^n$
 $\therefore (u_n)^{\frac{1}{m}} = [(1+\frac{1}{m})^{n}]^{\frac{1}{m}} = (1+\frac{1}{m})^n$
 $\therefore u_n^{\frac{1}{m}} = \lim_{n \to \infty} (1+\frac{1}{m})^n = e > 1$
 $\therefore The given series $\sum u_n$ is divergent.
Example (3): > Test the convergency of the series
$$\sum_{n=1}^{\infty} (\sqrt{n} - 1)^n$$
Solution: +
Here $u_n = (n^{\frac{1}{m}} - 1)^n$, then
$$\lim_{n \to \infty} (u_n)^{\frac{1}{m}} = \lim_{n \to \infty} (n^{\frac{1}{m}} - 1)$$
 $= \lim_{n \to \infty} n^{\frac{1}{m}} - 1$
 $= 1 - 1 = 0, (\pm 1)$ and less thand.
Hence by Cauchy's proof test.
The given series is convergency$

